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1. Introduction

The concept of the active constrained layer damping (ACLD) treatment is typically a three-
layer composite consisting of a passive viscoelastic damping layer sandwiched between an
active piezoelectric actuator layer (piezo-constraining layer) and a piezoelectric sensor layer.
The treatment is bonded to the beam structure and has been demonstrated as an effective
means for vibration suppression and control [1,2]. To enhance the effectiveness of the ACLD
treatments, many researchers investigated the optimal design and control problem of the system
[3–9]. The objective of the optimal design is usually to maximize the modal damping ratios,
modal strain energies or energy dissipation coefficients and/or minimize the weight of
the damping treatment by selecting the optimal variables such as the placement and/or sizing
of the ACLD treatment, thickness and shear modulus of the viscoelastic material (VEM)
cores, piezo-electric sensor/actuator parameters, control gains, etc. In the optimal control
problem, the objective is usually to select the optimal control gains to minimize a quadratic
performance index which is equal to a weighted sum of the vibrational and control energies. The
control performance index is expressed in terms of the initial states of the system and the optimal
control problem is posed to solve a min–max problem [3]. This control objective can also be used
to determine the optimal design variables such as placement and sizing of the piezoelectric
actuator [10,11].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The vibration characteristics of a rotating flexible beam with ACLD treatment have been
studied in Ref. [12]. This paper extends the work to study the optimal design and control
of the same system. The flexible arm, which is fully covered with ACLD treatment, is rotating
in a horizontal plane in which the gravitational effect and rotary inertia are neglected. The
VEM behavior is described using the complex shear modulus approach [13]. A PD controller
is used in this investigation. The finite element equations of motion of the system are presented.
The optimal design variables such as the PZT actuator thickness, viscoelastic layer thickness
and storage shear modulus are determined by maximizing the sum of the first three open-loop
modal damping ratios divided by the weight of the damping treatment. The optimal control
gains are determined by solving a min–max control optimization problem. Frequency re-
sponse and impulse response of the beam tip under different value of the control gains
are also presented. The results of this study will be useful in the optimal design and control
of rotating adaptive and smart structures such as rotorcraft blades or robotic arms.
2. Finite element equations of motion

A finite element of a clamped-free flexible arm with fully covered ACLD treatment is shown in
Fig. 1. The arm is of length L and is rotating in a horizontal plane at constant angular velocity _y
about the clamped axis. The thickness and density of the kth layer are denoted by hk and rk

respectively. The axial deformation uk and the transverse displacement w (chordwise bending) of
all three layers are in the plane of rotation. The subscripts 1, 2 and 3 denote the piezo-actuator
layer, the viscoelastic layer and the piezo-sensor/beam, respectively. The detailed derivation of the
finite element equations of motion has been presented in Ref. [12]. The linearized equation of
motion at the element level can be written as

Mqqi €qi þ 2_yGi _qi þ Kqqiqi ¼ Fci þ Fdi; (1)

where qi is the nodal deflection vector bounded between nodes j and k of the ith element,
which is given by qi ¼ fu1ju3jwjwjxu1ku3kwkwkxg

T where the subscript x denotes differentiation
with respect to the elemental coordinate x. Mqqi is the real symmetric positive definite generalized
mass matrix. Gi is the real skew symmetric gyroscopic matrix. Kqqi is the generalized stiffness
matrix which is complex due to the complex shear modulus G2 of the VEM such that
G2 ¼ G0

2ð1þ ZiÞ; where G0
2 is the storage modulus and Z is the loss factor at a nominal operating

temperature and frequency. The matrices Fci and Fdi represent the control force vector and the
external load, respectively. All the above matrices and vectors are given in Ref. [12]. With PD
controller applied to the piezo-sensor, the control force vector Fci and the output equation yi can
be written as

Fci ¼ Kp � B0iqi þ Kd � B0i _qi; (2)

yi ¼ Cixi; (3)
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Fig. 1. A finite element of the rotating flexible arm with fully covered ACLD treatment.
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where

xi ¼ ½qTi _qTi 

T;

B0i ¼
�1 0 0 0 1 0 0 0

0 0 0 �1 0 0 0 1

" #T
�

0 0 0 �g=2 0 0 0 g=2

0 0 0 �gh=2 0 0 0 gh=2

" #
;

Ci ¼ 0 0 0 �1 0 0 0 1 01�8
� �

;

(4a2c)

B0i is the voltage factored out electrical loads matrix; h and g are parameters defined in Ref. [12];
Kp and Kd are the proportional and derivative control gains, respectively.
The global equation is obtained using the standard finite element assembling procedure of

the elemental coefficient matrices. Combining and assembling the elemental coefficient
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matrices of Eqs. (1), (2) and (3) lead to the following global dynamical equations of the system in
state space form:

_x ¼ Axþ Buþ p;

y ¼ Cx and u ¼ Dx; ð5Þ

where

x ¼ ½qT _qT
T;

A ¼
0 I

�M�1
qq Kqq �2_y M�1

qq G

" #
; B ¼

0

M�1
qq B0

2
4

3
5 ;

p ¼
0

M�1
qq Fd

" #
; D ¼ KpI KdI

� �
(6a2e)

x, A and B denote the vector of state variables, the open-loop system matrix and the feedback
control matrix respectively. y, C and D denote the output vector, output measurement matrix and
control gain matrix respectively. u is the control input and p is the external load state vector. The
matrices in Eqs. (5) and (6) without the subscript i denote the global forms of the corresponding
elemental coefficient matrices. The boundary conditions at the global origin (the clamped end) are
zero for both the axial and transverse displacement of the layers.
3. Optimal design and control

The open-loop system vibration characteristic is optimized by finding the optimal design
variables such as the PZT actuator thickness h1, viscoelastic layer thickness h2 and storage shear
modulus G0

2of the VEM. The damping ratios xi of the open-loop system can be found by solving
the eigenvalues of the open-loop system matrix A. In this paper, the design objective function Jd is
defined as the sum of the first three open-loop modal damping ratios divided by the weight of the
damping treatment. The optimal design problem is formulated as searching h1, h2, and G0

2 to
maximize the design objective function

Jd ¼
x1 þ x2 þ x3

r1h1 þ r2h2 þ r3h3
(7)

such that properties of base beam and constraining layer are known, loss factor Z of VEM and the
angular velocity _y of the beam are set at a desired value.
A genetic algorithm, differential evolution (DE), combined with a gradient-based algorithm,

sequential quadratic programming (SQP), is used to determine the optimum design variables [8].
The DE algorithm is a population based stochastic function minimizer developed by Price and
Storn [http://www.icsi.berkeley.edu/~storn/code.html]. Its advantage is that it can avoid local
minima while its disadvantage is the slow convergence as compared to a gradient-based algorithm
such as SQP. To improve the speed and precision, the maximum number of iterations
(generations) of the DE algorithm is initially set. DE is then used to find an initial value that is

http://www.icsi.berkeley.edu/~storn/code.html
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very close to the optimal global value. Finally, the gradient-based algorithm SQP is used to
converge this value to the global minimum effectively.
The closed-loop equations of the system can be written as

_x ¼ ðAþ BDÞxþ p; xð0Þ ¼ x0;

y ¼ Cx and u ¼ Dx: ð8Þ

The optimal control gains Kp and Kd are determined by minimizing the following quadratic
performance index

Jc ¼

Z 1

0

ðyTQyþ uTRuÞdt: (9)

Provided that system (8) satisfies the standard conditions of stabilizability and detectability, the
performance index Jc can be expressed as a quadratic form in the initial conditions [14]

Jc ¼ xT0Pð0Þx0; (10)

where P is the symmetric positive definite matrix obtained by solving the following Lyapunov
matrix equation:

ðAþ BDÞ
TPþ PðAþ BDÞ þ CTQCþDTRD ¼ 0: (11)

In order to make the performance index Jc independent of the initial states it is normalized with
respect to the initial state x0. The worst case performance is then employed. The performance
index can be written as

Mc ¼ max
x0

Jc

xT0x0
: (12)

It is shown by Baz and Ro [3] that Mc is equal to the maximum eigenvalue lmax of the Pmatrix.
The optimal control problem is therefore posed to determine the controller gains Kp and Kd for
the following min–max optimization:

min
Kp;Kd

max
i

li ðPÞ (13)

such that Eq. (11) is satisfied.
4. Optimization results

The design optimization of the open-loop system is performed using the system parameters and
material properties in Ref. [12]. The arm is divided into five equal finite elements along its length.
The constraint conditions for the three design variables, namely the PZT actuator thickness h1,
viscoelastic layer thickness h2 and storage modulus G0

2 of the VEM are

0:5mmph1p4mm;

0:01mmph2p20mm;

0:01MPapG0
2p10MPa:
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Fig. 2. Optimal h1 and h2 versus angular velocity of beam _y for different VEM loss factor Z:
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The optimal h1 and h2 values versus angular velocity of beam _y for different VEM loss factor Z
are plotted in Fig. 2. It can be seen that the optimal h1 increases with increasing Z while the
optimal h2 decreases with increasing Z. It is also shown that, in general, the optimal h1 decreases
slightly with increasing _y while the optimal h2 increases as _y increases. The optimal G0

2 for the
present system is 7.4704MPa and is found to remain unchanged for different Z and _y:
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The VEM loss factor Z of 0.38 and angular velocity _y of 32.9 rad/s are chosen to perform both
the design and control optimization. The design optimization results are

h1 ¼ 0:52562mm; h2 ¼ 5:8255mm; G0
2 ¼ 7:4704MPa;

Jd ¼ 0:01521; h2=h3 ¼ 2:5483
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The effect of h1, h2 and G0
2 on the design objective function Jd for Z=0.38 and _y= 32.9 rad/s is

shown in Figs. 3 and 4. Fig. 3 shows that Jd increases with increase in h1 and h2 until the maximum
value is reached and then decreases with further increase in h1 and h2. These results can be
explained as follows. Increasing the thickness h1 and h2 will increase the open-loop modal
damping ratios for the first three modes considered. However, this occurs at the expense of
increasing the weight of the damping treatment. Hence Jd will reach a maximum value at the
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optimal values of h1 and h2. The effect of G0
2 on Jd shows similar result but after the maximum

value is reached Jd decreases more slowly with further increase of G0
2: It is shown in Ref. [12] that

increasing the beam angular velocity _y will decrease the open-loop modal damping ratios. Hence
Jd will decrease with increase of _y:
The optimal design variables as determined from the above open-loop design optimization are

used in the optimal control problem. The optimal controller gains Kp and Kd are determined by
solving the min–max problem (13). The constraint conditions for the control gains are 0pKpp10
and �0:5pKdp� 0:1: The weighting matrices Q and R in Eq. (11) are selected as identity
matrices. The results of the optimal control are Kp ¼ 0 and Kd ¼ 20:2: Hence the optimal
controller is a derivative feedback controller.
Fig. 5 shows frequency response function (FRF) of the beam tip when a unit harmonic point

load is applied at the centre of the tip [15]. It can be seen that the tip amplitude is reduced when Kp

is more positive or when Kd is more negative. However for stable numerical results, Kp is set to
vary in the range 0pKpp10 whereas Kd is set to vary in the range �0:5pKdp� 0:1: The results
show that the derivative control is more effective in suppressing the tip vibration as compared to
the proportional counterpart.
The impulse response of the beam tip for different values of Kp and Kd is shown in Fig. 6.

Similar to the findings of Fig. 5, it is evident that the closed-loop response outperforms the open-
loop one.
5. Conclusions

This paper has presented optimal design and control of a rotating flexible arm with ACLD
treatment. A PD controller is used in the feedback control law. The finite element governing
equations of motion of the system are presented. The optimal PZT actuator thickness, viscoelastic
layer thickness and storage shear modulus of the VEM core are determined by maximizing a
design objective function. The optimal control gains are determined by solving a min–max control
problem. Results are also presented for the frequency response and impulse response of the beam
tip under different control gains. The results clearly show that the closed-loop response
outperforms the open-loop one and also the derivative control is more effective in suppressing the
vibration as compared to the proportional counterpart.
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